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Review
The most prevalent neurodegenerative disorders involve
protein misfolding and the aggregation of specific pro-
teins. Autophagy is becoming an attractive target to
treat neurodegenerative disorders through the selective
degradation of abnormally folded proteins by the lyso-
somal pathway. However, accumulating evidence indi-
cates that autophagy impairment at different regulatory
steps may contribute to the neurodegenerative process.
Thus, a complex scenario is emerging where autophagy
may play a dual role in neurodegenerative diseases by
causing the downstream effect of promoting the degra-
dation of misfolded proteins and an upstream effect
where its deregulation perturbs global proteostasis,
contributing to disease progression. Challenges in the
future development of therapeutic strategies to target
the autophagy pathway are discussed.

Protein misfolding
The maintenance of protein homeostasis is crucial to sustain
neuronal function, especially during aging where adaptive
cellular mechanisms against stress are attenuated [1]. Pro-
tein misfolding and abnormal aggregation are common hall-
marks of most age-related neurodegenerative diseases [2,3],
including Alzheimer’s disease (AD), amyotrophic lateral
sclerosis (ALS), Parkinson’s disease (PD), and Huntington’s
disease (HD), which are classified as protein-misfolding
disorders (PMDs) [4,5]. This aggregation process involves
the generation of highly diffusible small oligomers, fibrils,
and large aggregates that are visualized as protein inclu-
sions with amyloid properties. Thus, strategies to remove
toxic oligomeric species are becoming an attractive target for
future therapeutic intervention in PMDs.

Macroautophagy (here referred to as autophagy) is the
main cellular catabolic route for protein aggregates and
damaged organelles. Many studies in the past 10 years
have shown that autophagy is an efficient mechanism for
the selective degradation of aggregation-prone proteins
linked to neurodegeneration and several pharmacological
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and genetic strategies have been developed to enhance the
activity of the pathway in a disease context [6]. Complex
signaling mechanisms control the activation of autophagy,
which could be globally classified as mammalian target of
rapamycin (mTOR)-dependent or -independent pathways.
Strategies to engage both pathways have proved efficient
in decreasing neurodegeneration in certain preclinical
models of neurodegeneration [7,8]. The mTOR inhibitor
rapamycin is the most widely used small molecule in testing
the consequences of enhancing autophagy activity in many
disease models [7,9]. Although mTOR-independent path-
ways are poorly described in terms of molecular details,
various drugs have been identified to enhance autophagy
through this mechanism, providing neuroprotection in di-
verse models of PMDs [9]. Despite these promising observa-
tions, accumulating evidence also indicates that alteration of
distinct regulatory steps of autophagy may result in global
dysfunction of the degradative capacity of the cell, contribut-
ing to neurodegeneration [10]. In such diseases enhancement
of autophagy may have detrimental consequences, exacer-
bating disease progression. Here we discuss several exam-
ples illustrating a complex scenario where, depending on the
strategy used and the disease context, the final outcome of
manipulating autophagy is disparate. We also provide an
overview of recent advances aiming to target autophagy with
pharmacological and gene-therapy approaches. We also
highlight the possible limitations of the currently available
drugs for enhancing autophagy levels.

Protein misfolding disorders
Several neurodegenerative diseases share the pathological
hallmark of accumulating misfolded proteins in both spo-
radic and genetic cases. The genes that encode these
proteins are often found mutated in corresponding familial
cases, which suggests that there are common pathological
mechanisms that underlie neuronal dysfunction. Here we
briefly introduce the molecular hallmarks of PMDs to
provide relevant information about the impact of autop-
hagy in neurodegenerative diseases.

In AD the presence of amyloid plaques and intracellular
neurofibrillary tangles, formed by the amyloid b peptide
and hyperphosphorylated tau respectively, are central
pathological features of the disease, associated with the
occurrence of neuronal impairment and memory loss
[11,12]. In some rare familial forms of AD, mutations in
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two proteins involved in amyloid b metabolism – amyloid
precursor protein (APP) and presenlin 1 – have been identi-
fied [11]. PD is characterized by the selective degeneration of
dopaminergic neurons of the substantia nigra pars com-
pacta [13]. PD is associated also with the presence of intra-
cellular inclusions known as Lewy bodies, comprising
aggregated a-synuclein and polyubiquitinated proteins. An-
other PMD is HD, an autosomal-dominant pathology char-
acterized by the expansion of polyglutamine repeat tracts in
the N-terminal region of Huntingtin. Mutant Huntingtin
produces cytoplasmic aggregates triggering neuron loss in
the striatum [14,15]. Finally, ALS is a prevalent adult-onset
paralytic disease involving the selective death of motor
neurons in the brain and spinal cord [16]. The most common
genetic causes of familial ALS are the recently defined
hexanucleotide repeat expansion in the intronic region of
C9orf72 and mutations in the gene encoding cytosolic su-
peroxide dismutase 1 (SOD1) [17]. Mutations in TAR DNA-
binding protein (TARDBP, also known as TDP-43) known as
TDP-43) also causes familial ALS and cytoplasmic inclu-
sions of wild type TDP-43 are found in nearly all postmortem
studies of tissue derived from sporadic ALS. Thus, based on
the fact that protein misfolding and aggregation are hall-
marks of many brain diseases, strategies to enhance the
degradation of abnormally folded proteins are predicted to
have beneficial effects in alleviating neurodegeneration.

Key players in the regulation of autophagy
Autophagy regulates important biological functions such
as cell survival, cell death, cell metabolism, development,
PINK1

mHTT

LC3 II

LC3 I

ATG16
ATG12

ATG5

ATG7

ATG9

mHTT Rab1a

Phagophore Au

PINK1

VPS34VPS15

Beclin 1

Beclin 1Bc1–2 Bc1–2

Parkin

mLRRK2

mSOD1

αs

p62

Parkin
mLRRK2

Mitophagy

Figure 1. Autophagy impairment in neurodegenerative diseases. Possible defects 

neurodegenerative disorders. Abnormal interactions of mutant superoxide dismutase 1 

alter the initiation steps of autophagy. PINK and Parkin play a key role in the elimination

(PD) could interfere with mitophagy. mHTT expression leads to altered cargo recognitio

interaction with Rab1a. Presenilin-1 (PS1) mutations cause impairment in lysosomal aci

function of lysosomes.

584
aging, infection, and immunity [18]. In other contexts, the
failure to induce autophagy or over-enhancement of the
pathway may underlie certain brain pathologies. Several
components, known as autophagy-related genes (ATGs),
regulate discrete steps in the autophagy process [18]. ATGs
form diverse protein complexes in sequential steps control-
ling autophagosome formation and vesicle fluxes (Figure 1)
[19], including autophagy induction, nucleation/autopha-
gosome formation, vesicle expansion, cargo recognition,
crosstalk between endocytosis and autophagy, and autop-
hagosome clearance [20,21]. The initiation of the autophagy
process is mediated in part by a protein kinase complex that
responds to upstream signals (Atg1 and Atg13 in yeast). The
serine/threonine protein kinase mTOR is a component of
mTOR complex 1 (mTORC1) and acts as a regulator of
autophagy by suppressing the pathway under nutrient-rich
conditions. The nucleation and formation of autophagosome
is regulated by enzymes involving in the generation of
phosphatidylinositol 3-phosphate (PI3P), including the
class III phosphatidylinositol 3-kinase (PI3K) VPS34, which
mediates the localization of other autophagy-regulatory
proteins to the pre-autophagosomal structure [21]. The
nucleation complex partly comprises BCL-2-interacting
protein (Beclin 1) and other fundamental elements, includ-
ing VPS34. Beclin 1 is negatively regulated by the antia-
poptotic proteins BCL-2 and BCL-XL at the endoplasmic
reticulum (ER) membrane [22]. Beclin 1 has been also
involved in the activation of ATG5/ATG7-independent
autophagy [23]. Vesicle expansion is mediated by the cova-
lent conjugation of ATG12 to ATG5, which, in association
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with ATG16, translocates to the membrane of early autop-
hagosomes and promotes the conjugation of microtubule-
associated protein light chain 3 (LC3) to phosphatidyletha-
nolamine (PE) [19]. On conjugation, the soluble LC3-I trans-
locates to the autophagosome membrane where it is then
referred to as LC3-II. Finally, autophagosomes fuse with
acidic lysosomes to acquire hydrolytic activity, forming
the autophagolysosome compartment where the cargo is
subsequently degraded. Monitoring LC3-II flux through
the autophagy pathway is the gold standard to determine
the activation of this cellular process [24].

Although starvation-induced autophagy is mainly reg-
ulated by mTOR signaling, autophagy is also controlled
through mTOR-independent events (Figure 2). This mech-
anism is emerging as an interesting target to enhance
autophagy because it avoids altering the pleiotropic
responses controlled by mTOR. This alternative route
was discovered through pharmacological screening aimed
to define new molecular targets to enhance autophagy
[25–27]. Several mTOR-independent modulators of autop-
hagy were discovered involving fluctuations in intracellu-
lar calcium levels and the turnover of inositol phosphates.
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mTOR-independent pathways are induced by agents that
lower or deplete inositol 3-phosphate (IP3) levels, such as
lithium, valproate, and carbamazepine [9]. Additionally, it
has been suggested that calcium signaling also modulates
mTOR-independent autophagy. Calcium could also acti-
vate calpain to induce autophagy associated with the
regulation of IP3 production and cAMP [25]. Although
controversial, lithium has been shown to have neuropro-
tective effects in various disease models and has the ca-
pacity to induce autophagy through inhibition of inositol
monophosphatase (IMPase) and inositol transporters
[28]. Other molecules, such as spermidine and resveratrol,
have been shown to enhance autophagy through epigenetic
changes, having important neuroprotective effects and
prolonging lifespan in model organisms [29,30]. Finally,
several stress signals can also engage autophagy [31];
where we highlight the induction of protein-folding stress
at the ER. ER stress, but also nutrient starvation, has been
shown to induce autophagy through the activation of the
unfolded-protein response (UPR) sensor IRE1 and the
downstream activation of c-Jun N-terminal kinase (JNK)
[32,33], which may modulate the dissociation of the Beclin
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1 and BCL-2 complex [34]. ER stress has also been shown
to enhance autophagy by the upregulation of Atgs through
several UPR transcription factors and also FOXO1, a
critical regulator of autophagy in neurons. The ER had
been implicated as a source of membranes to generate
autophagosomes and omegasome formation (autophago-
somes biogenesis) [35,36]. Since ER stress is a hallmark
of most PMDs affecting the nervous system, the UPR
represents an interesting homeostatic pathway connecting
alteration of cellular proteostasis and autophagy induction
[5]. Thus, multiple regulatory mechanisms exist to inte-
grate catabolic needs in the cell and to fine-tune autophagy
levels to sustain proteostasis.

Failure of autophagy in neurodegenerative disease
The first direct evidence linking proteostasis control and
autophagy in the nervous system came from studies in
which genetic inactivation of essential regulatory genes
(Atg5 or Atg7) in the central nervous system was performed
in mice. Inactivation of autophagy in neurons caused
spontaneous neurodegeneration, promoting the spontane-
ous accumulation of protein aggregates, extensive neuro-
nal loss, and premature death of the animal [37,38]. Many
reports in PMD models have indicated that abnormal
interactions with specific components of the autophagy
machinery may perturb cellular homeostasis, contributing
to disease progression (Figure 1) [10,39–41]. These altera-
tions may enhance abnormal protein aggregation in PMDs,
but also could contribute to the accumulation of damaged
organelles, having deleterious consequences on cell physi-
ology. For example, a polymorphism in ATG7 was corre-
lated with the severity of HD [42]. Levels of Beclin 1 or its
availability are reduced in the brain during aging, corre-
lating with enhanced vulnerability to the development of
experimental AD [43] or HD [44]. By contrast, upregula-
tion of Beclin 1 levels has been reported in various neuro-
degenerative diseases, including ALS [45], PD [46], and
HD [47,48]. Although several studies have uncovered an
important neuroprotective activity of Beclin 1 in PMDs
using genetic manipulation (as indicated in models of PD,
AD, and polyglutamine diseases [43,44,47,49,50]), reduc-
ing levels of Beclin 1 in an animal model of ALS provided
protection against neurodegeneration, prolonging lifespan
(see below) [51].

A few reports have shown that PMD-related proteins
may directly alter the initiation of autophagy through
physical interaction with the Beclin 1 complex. Mutant
Huntingtin and the Huntingtin-interacting protein Rhes
can sequester Beclin 1, which may result in attenuated
autophagy capacity [44,52]. Similarly, the PD-linked pro-
tein PINK1 physically interacts with Beclin 1, altering
levels of autophagy [53,54]. A recent report also indicated
that Parkin, another important PD gene, interacts with
Beclin 1 and modifies autophagy activity [50]. Finally, we
recently reported that mutant SOD1 associates with the
Beclin 1/BCL-XL complex, destabilizing this inhibitory
interaction, which may perturb global autophagy levels
[51].

The adapter protein p62/SQSTM1 is the most widely
studied component of the cargo-recognition machinery that
delivers substrates to autophagosomes. Deficiency in cargo
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loading into autophagosomes has been observed in cellular
and animal models of HD, causing impaired protein deg-
radation by autophagy despite increased autophagic vesi-
cle content [55]. Several mutations in p62/SQSTM1 have
been identified in ALS cases [56], consistent with the
observation that p62/SQSTM1 promotes the autophagy-
dependent degradation of mutant SOD1 and TDP-43
[57,58]. Other rare genes linked to ALS are reported to
alter autophagy levels, including charged multivesicular
body protein-2B (CHMP2B), the lipid phosphatase Fig. 4,
and UBQLN2 [59–61]. These findings suggest that dereg-
ulation of protein-degradation pathways may represent an
important pathological mechanism leading to proteostasis
defects in ALS [56].

In AD, global alteration in the proteolytic capacity of
lysosomes has been observed, involving problems in the
control of luminal pH. At the molecular level, it was shown
that presenilin-1 directly regulates the acidification of
lysosomes by controlling the maturation of a v-ATPase
subunit [62]. In agreement with this finding, restoring
lysosomal function in a mouse model of AD attenuated
the progression of neuropathology in the brain [63]. Simi-
larly, accumulating evidence indicates that lysosomal dys-
function also contributes to the occurrence of PD [64]. For
example, mutations in the lysosomal ATPase ATP13A2/
PARK9 in familial PD trigger drastic alterations in the
degradative capacity of lysosomes, leading to an abnormal
accumulation of autophagosomes [65]. Mutant forms of
LRRK2/PARK2 and a-synuclein also alter lysosome-medi-
ated degradation of substrates of the chaperone-mediated
autophagy pathway [66,67] and negatively impact the
trafficking of autophagy vesicles through interactions with
Rab1 [68]. Other rare mutations linked to PD, such as
VPS35, may also contribute to autophagy impairment due
to altered vesicle trafficking [69].

Finally, the selective degradation of mitochondria by
autophagy (referred to as mitophagy) is also altered in PD.
The PD-related proteins PINK1 and Parkin operate as
central components of the mitophagy pathway [70]. In
addition, a recent study suggested that mutant LRRK2
physically interacts with Beclin 1, affecting the function of
LRRK2 in mitophagy [71]. Overall, these studies highlight
an emerging concept where perturbations in the function of
autophagy and the lysosomal pathway may contribute to
the development of neurodegenerative conditions as part
of the etiology of the disease, affecting the global mainte-
nance of proteostasis and catabolic processes involved in
the clearance of damaged organelles.

Pharmacological targeting of autophagy in
neurodegenerative disease
Since autophagy operates as an efficient system to selec-
tively degrade abnormal proteins associated with PMDs
and damaged organelles, various compounds have been
identified in high-throughput screening to enhance
autophagy with proven efficacy in several preclinical
models of disease (reviewed in [8,72]) (Figure 3).
Here we highlight selected studies indicating the thera-
peutic potential, but also the detrimental consequences,
of enhancing autophagy levels in neurodegenerative
disease (Table 1).
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Figure 3. Molecular structure of selected molecules that can induce autophagy.
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Although the brain responds poorly to global nutrient
deprivation compared with other tissues, autophagy in-
duction by rapamycin has been shown to provide protection
in several experimental models of neurodegeneration. Pio-
neering studies by David Rubinsztein indicated that the
administration of rapamycin to fly and mouse models of
Table 1. Therapeutic effects of selected agents that modulate aut

Disease Agents Effects 

Pharmacology

Alzheimer’s disease Rapamycin Attenuates

Trehalose Reduces T

Methylene blue Reduces t

Huntington’s disease Rapamycin Improves 

Huntingtin

Trehalose Improves 

aggregatio

Parkinson’s disease Rapamycin Reduces d

Trehalose Rescues m

and impro

Tunicamycin Protects d

of the dise

ALS/FTD Rapamycin,

Carbamazepine,

Spermidine and

Tamoxifen

Reduces m

and impro

Trehalose Decreases

motoneur

Rapamycin Has no im

transgenic

Rapamycin Exacerbat

Gene Therapy

Alzheimer’s disease LV-Beclin 1 Reduced b

deposition

Parkinson’s disease LV-Beclin 1 Reduces a

Machado-Joseph disease LV-Beclin 1 Rescues m

aLV, lentivirus.
HD has protective consequences, enhancing the removal of
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rapamycin analog CCI-779 delays the pathology of HD and
spinocerebellar ataxia models [73], in addition to PD [64,78]
and other neurodegenerative diseases [79]. Overall, in vitro
studies have demonstrated that treatment with rapamycin
and its derivates promote the clearance of the most relevant
aggregate-prone proteins involved in neurodegeneration,
including polyglutamine- and polyalanine-containing pro-
teins, mutant tau, a-synuclein, TDP-43, and prion protein
among other PMD-related proteins [6].

In contrast with these reports, studies in ALS are more
complex to interpret. Rapamycin treatment had no obvious
beneficial effects [80,81] or even detrimental consequences
on ALS progression in mutant SOD1 transgenic mice
[82]. Despite this, rapamycin administration to mutant
TDP-43 transgenic mice delayed ALS progression [83]. In
addition to ALS, TDP-43 mutations are linked to fronto-
temporal dementia (FTD). Impairment of mTOR signaling
and altered accumulation of autophagosomes were de-
scribed in valosin-containing protein (VCP) transgenic mice,
a model of FTD and ALS [84]. Treatment of VCP mice with
rapamycin had negative effects on the model, exacerbating
histopathological alterations [84]. Thus, in certain diseases
where autophagy is impaired or altered, further enhance-
ment of the pathway may have detrimental consequences.
These effects may depend on the specific pathological mech-
anism behind a disease gene.

One of the most interesting mTOR-independent autop-
hagy inducers discovered so far is trehalose, a non-reduc-
ing disaccharide produced naturally by some living
organisms (non-mammals) under stress conditions. Treha-
lose was initially described as a chemical chaperone that
could stabilize protein conformations, preventing protein
aggregation. Notably, trehalose has long history of use in
the food industry as a preserving agent (FDA approved).
Overall, trehalose treatment is able to induce the degra-
dation of various aggregation-prone proteins through
autophagy enhancement in cell culture models [26]. Re-
markably, oral administration of this compound decreased
mutant Huntingtin aggregation and improved motor func-
tion in a mouse model of HD, prolonging lifespan [85]. Tre-
halose administration also has relevant neuroprotective
effects in animal models of PD, AD, oculopharyngeal mus-
cular dystrophy, and tauopathies [86–89]. The translation-
al potential of trehalose is evident since it provides
neuroprotection through oral administration in many ani-
mal models of disease. However, it is important to high-
light the fact that only a few recent studies have correlated
the neuroprotective effects of trehalose with autophagy
induction in vivo as described, for example, in models of
tau-mediated pathology and AD [88]. Recently, we
reported beneficial effects of trehalose administration in
a mouse model of ALS associated with the induction of
mTOR-independent autophagy [90]. We also showed the
active engagement of autophagy fluxes in the brain using a
new strategy to monitor autophagy activity in neurons
in vivo [91]. Trehalose treatment prolonged lifespan and
significantly decreased the severity of the disease, associ-
ated with enhanced degradation of mutant SOD1 [90].
Similar findings were recently found in another ALS
mouse model, where trehalose administration significantly
delayed disease onset and decreased neuronal loss
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[92]. Trehalose treatment upregulates the transcription
of a cluster of atg genes [90] correlating with the activation
of FOXO1, a major transcription factor involved in the
regulation of autophagy-related genes in neurons and
during aging [93]. Collectively, the aforementioned studies
inspire optimism for novel treatment options for various
neurological diseases.

While rapamycin and trehalose are pharmacological
agents widely tested in preclinical models of neurodegenera-
tion, other drugs have been identified to modulate autop-
hagy with interesting results. Small molecules such as
spermidine, carbamazepine, and tamoxifen were shown to
rescue motor dysfunction in mutant TDP-43 transgenic
mice, correlating with enhanced autophagy levels [83].
Methylene blue (methylthioninium chloride) also attenuates
tauopathy in animal models correlating with increased
expression of autophagy markers [94]. In HD, it was
reported that nitric oxide induction blocks autophagosome
formation and this effect could be reduced by N-L-arginine
methyl ester (L-NAME), protecting against HD [95].
Conversely, in models of FTD involving the loss of progra-
nulin function, treatment with inhibitors of autophagy
significantly increased the levels of progranulin, rescuing
the pathological effects observed in the model [96]. However,
none of these reports directly demonstrated that autophagy
was mediating the effects observed on disease progression in
vivo and the drugs used target many cellular processes
beyond autophagy. Direct manipulation of essential
autophagy regulators was needed in those studies to
define the functional involvement of the pathway to neuro-
degeneration.

The proteostasis network involves dynamic intercon-
nection between various stress pathways including autop-
hagy and the UPR in addition to the proteasome system,
the heat-shock response, and quality control mechanisms
[97]. Importantly, recent discoveries in the field also sug-
gest that neurons may even control proteostasis in periph-
eral tissues, expanding the possible therapeutic benefit of
targeting autophagy in the brain to other affected organs
[98]. Induction of mild ER stress with the pharmacological
inducer tunicamycin was shown to provide neuroprotec-
tion against PD, possibly due to the upregulation of autop-
hagy [99]. Genetic manipulation of a key transcription
factor of the UPR, known as XBP1, enhances autophagy
in the brain and provides protection in mouse models of
ALS [45] and HD [100]. The therapeutic consequences of
targeting XBP1 involved enhancement of neuronal surviv-
al, decreased load of protein aggregates, and extension of
lifespan. XBP1 was proposed to enhance autophagy by the
negative control of FOXO1 levels [100]. Similarly, manip-
ulating the UPR in Caenorhabditis elegans can provide
protection against amyloid b due to enhanced autophagy
levels [101]. Thus, targeting distinct nodes of the proteos-
tasis network may be used as a strategy to enhance autop-
hagy in a disease context.

Gene therapy to enhance autophagy levels
Gene-therapy approaches have been extensively used to
target protein aggregation in brain diseases [102] and have
been explored to manipulate autophagy in a more specific
manner. This area remains poorly explored, but a few
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examples are documented with positive results. Beclin
1 administration via gene therapy in animal models of
PD and Lewy body disease demonstrated beneficial effects,
reducing the accumulation of a-synuclein and ameliorating
synaptic dysfunction [49]. Likewise, injection of lentivirus
expressing Beclin 1 into the cerebellum of a mouse model of
spinocerebellar ataxia type 3 (Machado–Joseph disease)
significantly improved motor performance, accompanied
by reduced protein aggregation [103]. Similarly, Beclin
1 gene transfer attenuated AD pathology in a transgenic
mouse model of the disease [43]. Consistent with these
findings, Beclin 1 haploinsufficiency exacerbated the de-
velopment of experimental AD in vivo [43]. These results
may involve the degradation of APP by the autophagic
pathway [104]. By sharp contrast, we recently reported
that Beclin 1 haploinsufficiency had significant protective
effects in an ALS mouse model, increasing lifespan
[51]. These unexpected findings were accompanied by
accumulation of p62, reduced levels of LC3-II, and an
altered equilibrium between monomeric and oligomeric
species of mutant SOD1 in the spinal cord [51]. These
observations were explained by a possible reversal of the
autophagy alterations due to a physical interaction of
mutant SOD1 with the Beclin 1/BCL-XL complex.

Taken together, these studies uncovered for the first
time a direct role of autophagy in neurodegenerative dis-
eases, depicting a complex scenario where the contribution
of the pathway is difficult to predict and may depend on
the specific disease context analyzed.

Concluding remarks
As discussed here increasing evidence supports the idea
that pharmacological manipulation of autophagy may have
neuroprotective effects in certain PMDs, delaying neuro-
degenerative events. However, it is crucial to understand
in detail the mechanisms that may underlie the im-
pairment of autophagy in specific conditions to predict
the possible detrimental effects of such therapies to en-
hance autophagy. To maximize potential therapeutic
approaches, future studies should seek to define the nature
of the autophagy defects, the cellular responses associated
with these alterations, and the stages of disease progres-
sion wherein such responses occur. This information
should be used to generate combinatorial strategies to
bypass or revert possible autophagy defects and further
enhance autophagy in a physiological window. The dynam-
ic range of autophagy enhancement should be defined to
determine the limit that could be exploited, to avoid altera-
tions in global homeostasis due to over-degradation of
cellular components.

The identification of small molecules that target mTOR-
dependent and -independent autophagy pathways are
opening interesting avenues for therapeutic intervention
and several small molecules are available to enhance
autophagy, some of which are already FDA-approved
drugs. However, clinical trials remain lacking in this im-
portant field. Calibrating drug concentrations and regi-
mens for chronic use of these compounds is a challenging
issue for future clinical trials to avoid detrimental effects of
overactivation of the pathway. Since most available drugs
target many biological processes beyond autophagy, it is
clear that more sophisticated high-throughput screening is
needed to discover novel pharmacological agents for the
accurate manipulation of autophagy with higher specificity
and improved pharmacokinetic and safety properties.
Based on this difficulty, gene therapy may emerge as an
alternative strategy to specifically enhance autophagy
responses, and available data suggest important therapeu-
tic consequences of delivering autophagy-regulatory genes
locally into affected tissue in various disease models. Since
autophagy is emerging as an important homeostatic path-
way that fine-tunes many physiological processes such as
immunity and energy metabolism [18], targeting autop-
hagy may have important secondary effects on chronic use.
It is becoming imperative to develop more sophisticated
assays for drug discovery, in addition to systematically
defining the consequences of these compounds globally at
the level of the proteostasis network. Uncovering the pos-
sible side effects of manipulating autophagy at the system-
ic level remains an important subject for future validation
of the pathway as a drug target and to move forward into
the development of clinical trials to treat neurodegenera-
tive diseases.
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